AHD2080

Invoice: AH09043

Martin Mendoza City of Madera 1030 S. Gateway Drive Madera, CA 93637-4728

RE: Report for AHD2080 Special Sampling

Dear Martin Mendoza.

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 4/12/2024. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2016 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

This certificate of analysis shall not be reproduced except in full, without written approval of the laboratory.

If additional clarification of any information is required, please contact your Project Manager, Yolanda Martin , at 559-497-2888.

Thank you again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Stephane Maupas, Manager - Project Management

Accredited in Accordance with NELAP ORELAP #4021

Case Narrative

Project and Report Details Invoice Details

Client:City of MaderaInvoice To: City of MaderaReport To:Martin MendozaInvoice Attn: Martin Mendoza

Project #: Special Sampling Project PO#:
Received: 4/12/2024 - 08:42

Received: 4/12/2024 - **Report Due:** 4/16/2024

Sample Receipt Conditions

Cooler:Default CoolerContainers IntactTemperature on Receipt °C: 10.4COC/Labels Agree

Received On Wet Ice

Sample(s) arrived at lab on same day sampled. Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

B Analyte exceeds laboratory acceptance limit for blank contamination.

B1.1 Analyte detected in associated method blank. No material impact on reported result as sample is ND for this parameter.

Report Distribution

Recipient(s) Report Format CC:

Martin Mendoza MCL_FINAL.RPT

AHD2080

ASSOCIATES

Special Sampling

Special Sampling

Certificate of Analysis

Sample ID: AHD2080-01
Sampled By: Martin Mendoza
Sample Description: Water Tower

 $\textbf{Sample Date - Time:} \ \ 04/12/2024 - 07:35$

Matrix: Drinking Water

Sample Type: Grab

BSK Associates Laboratory Fresno Organics

Analyte	Method	Result	RL	Units	RL Mult	1° MCL	2° MCL	Batch	Prepared	Analyzed	Qual
Volatile Organics by GC-MS											
1,1,1,2-Tetrachloroethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,1,1-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	200		AHD0868	04/12/24	04/12/24	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	0.50	ug/L	1	1		AHD0868	04/12/24	04/12/24	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 524.2	ND	10	ug/L	1	1200		AHD0868	04/12/24	04/12/24	
1,1,2-Trichloroethane	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
1,1-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
1,1-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	6		AHD0868	04/12/24	04/12/24	
1,1-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,2,3-Trichlorobenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,2,4-Trichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
1,2,4-Trimethylbenzene	EPA 524.2	12	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,2-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	600		AHD0868	04/12/24	04/12/24	
1,2-Dichloroethane	EPA 524.2	ND	0.50	ug/L	1	0.5		AHD0868	04/12/24	04/12/24	
1,2-Dichloropropane	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
1,3,5-Trimethylbenzene	EPA 524.2	4.6	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,3-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,3-Dichloropropane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
1,4-Dichlorobenzene	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
2,2-Dichloropropane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
2-Butanone	EPA 524.2	ND	5.0	ug/L	1			AHD0868	04/12/24	04/12/24	
2-Chlorotoluene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
2-Hexanone	EPA 524.2	ND	10	ug/L	1			AHD0868	04/12/24	04/12/24	
4-Chlorotoluene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
4-Methyl-2-pentanone	EPA 524.2	6.5	5.0	ug/L	1			AHD0868	04/12/24	04/12/24	
Acetone	EPA 524.2	ND	10	ug/L	1			AHD0868	04/12/24	04/12/24	
Benzene	EPA 524.2	ND	0.50	ug/L	1	1		AHD0868	04/12/24	04/12/24	
Bromobenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Bromochloromethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Bromodichloromethane	EPA 524.2	0.94	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Bromoform	EPA 524.2	2.5	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Bromomethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Carbon Tetrachloride	EPA 524.2	ND	0.50	ug/L	1	0.5		AHD0868	04/12/24	04/12/24	
Chlorobenzene	EPA 524.2	11	0.50	ug/L	1	70		AHD0868	04/12/24	04/12/24	
Chloroethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Chloroform	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Chloromethane	EPA 524.2	1.6	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
cis-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	6		AHD0868	04/12/24	04/12/24	
cis-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1			AHD0868		04/12/24	
Dibromochloromethane	EPA 524.2	3.0	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Dibromomethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Dichlorodifluoromethane	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Dichloromethane	EPA 524.2	ND	0.50	ug/L	1	5			04/12/24	04/12/24	
Ethyl tert-Butyl Ether (ETBE)	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Special Sampling

Special Sampling

Certificate of Analysis

Sample ID: AHD2080-01
Sampled By: Martin Mendoza
Sample Description: Water Tower

Sample Date - Time: 04/12/2024 - 07:35

Matrix: Drinking Water

Sample Type: Grab

Organics

Analyte	Method	Result	RL	Units	RL Mult	1° MCL	2° MCL	Batch	Prepared	Analyzed	Qual
Volatile Organics by GC-MS					Midit	MOL	MOL				
Ethylbenzene	EPA 524.2	12	0.50	ug/L	1	300		AHD0868	04/12/24	04/12/24	
Hexachlorobutadiene	EPA 524.2	ND	0.50	ug/L	1			AHD0868		04/12/24	
Isopropylbenzene	EPA 524.2	1.4	0.50	ug/L	1			AHD0868		04/12/24	
m,p-Xylenes	EPA 524.2	11	0.50	ug/L	1			AHD0868		04/12/24	
Methyl-t-butyl ether	EPA 524.2	ND	0.50	ug/L	1	13	5	AHD0868		04/12/24	
Naphthalene	EPA 524.2	ND	0.50	ug/L	1	.0		AHD0868		04/12/24	B1.1
n-Butylbenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868		04/12/24	
n-Propylbenzene	EPA 524.2	11	0.50	ug/L	1			AHD0868		04/12/24	
o-Xylene	EPA 524.2	13	0.50	ug/L	1			AHD0868		04/12/24	
p-Isopropyltoluene	EPA 524.2	ND	0.50	ug/L	1			AHD0868		04/12/24	
sec-Butylbenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Styrene	EPA 524.2	ND	0.50	ug/L	1	100		AHD0868		04/12/24	
tert-Amyl Methyl Ether (TAME)	EPA 524.2	ND	3.0	ug/L	1			AHD0868	04/12/24	04/12/24	
tert-Butyl alcohol (TBA)	EPA 524.2	35	2.0	ug/L	1			AHD0868	04/12/24	04/12/24	
tert-Butylbenzene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Tetrachloroethene (PCE)	EPA 524.2	0.67	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
Toluene	EPA 524.2	ND	0.50	ug/L	1	150		AHD0868	04/12/24	04/12/24	
trans-1,2-Dichloroethene	EPA 524.2	ND	0.50	ug/L	1	10		AHD0868	04/12/24	04/12/24	
trans-1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1			AHD0868	04/12/24	04/12/24	
Trichloroethene (TCE)	EPA 524.2	ND	0.50	ug/L	1	5		AHD0868	04/12/24	04/12/24	
Trichlorofluoromethane	EPA 524.2	ND	5.0	ug/L	1	150		AHD0868	04/12/24	04/12/24	
Vinyl Chloride	EPA 524.2	ND	0.50	ug/L	1	0.5		AHD0868	04/12/24	04/12/24	
Total 1,3-Dichloropropene	EPA 524.2	ND	0.50	ug/L	1	0.5		AHD0868	04/12/24	04/12/24	
Total Trihalomethanes		6.4	0.50	ug/L		80					
Total Xylenes	EPA 524.2	25	0.50	ug/L	1	1750		AHD0868	04/12/24	04/12/24	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	95 %		Accepta	ble range	e: 70-130	%				
Surrogate: Bromofluorobenzene	EPA 524.2	97 %		Accepta	ble range	e: 70-130	%				

Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 52	4.2 - Qı	uality Co	ntrol						
Batch: AHD0868										Prepare	d: 4/11/20
Prep Method: EPA 524.2										A	nalyst: C
Blank (AHD0868-BLK1)											
,1,1,2-Tetrachloroethane	ND	0.50	ug/L							04/12/24	
,1,1-Trichloroethane	ND	0.50	ug/L							04/12/24	
,1,2,2-Tetrachloroethane	ND	0.50	ug/L							04/12/24	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	ug/L							04/12/24	
,1,2-Trichloroethane	ND	0.50	ug/L							04/12/24	
,1-Dichloroethane	ND	0.50	ug/L							04/12/24	
,1-Dichloroethene	ND	0.50	ug/L							04/12/24	
,1-Dichloropropene	ND	0.50	ug/L							04/12/24	
,2,3-Trichlorobenzene	ND	0.50	ug/L							04/12/24	
,2,4-Trichlorobenzene	ND	0.50	ug/L							04/12/24	
,2,4-Trimethylbenzene	ND	0.50	ug/L							04/12/24	
,2-Dichlorobenzene	ND	0.50	ug/L ug/L							04/12/24	
,2-Dichloroethane	ND	0.50	ug/L							04/12/24	
,2-Dichloropropane	ND	0.50	ug/L ug/L							04/12/24	
,3,5-Trimethylbenzene	ND	0.50	ug/L ug/L							04/12/24	
,3-Dichlorobenzene	ND	0.50								04/12/24	
,3-Dichloropropane	ND	0.50	ug/L ug/L							04/12/24	
,4-Dichlorobenzene	ND	0.50	ug/L ug/L							04/12/24	
2,2-Dichloropropane	ND	0.50	ug/L ug/L							04/12/24	
2-Butanone	ND	5.0	ug/L ug/L							04/12/24	
2-Chlorotoluene	ND	0.50	ug/L							04/12/24	
2-Hexanone	ND	10	ug/L							04/12/24	
rexamone I-Chlorotoluene	ND	0.50	ug/L ug/L							04/12/24	
Methyl-2-pentanone	ND	5.0	ug/L ug/L							04/12/24	
Acetone	ND	10	ug/L							04/12/24	
Benzene	ND	0.50	ug/L							04/12/24	
Bromobenzene	ND	0.50	ug/L							04/12/24	
Bromochloromethane	ND	0.50	ug/L							04/12/24	
Bromodichloromethane	ND	0.50	ug/L ug/L							04/12/24	
Bromoform	ND	0.50	ug/L ug/L							04/12/24	
Bromomethane	ND	0.50	ug/L							04/12/24	
Carbon Tetrachloride	ND	0.50	ug/L ug/L							04/12/24	
Chlorobenzene	ND	0.50	ug/L ug/L							04/12/24	
Chloroethane	ND	0.50								04/12/24	
Chloroform	ND ND	0.50	ug/L ug/L							04/12/24	
Chloromethane	ND	0.50	ug/L ug/L							04/12/24	
siis-1,2-Dichloroethene	ND	0.50	ug/L ug/L							04/12/24	
sis-1,2-Dichloroethene sis-1,3-Dichloropropene	ND ND	0.50	ug/L ug/L							04/12/24	
Dibromochloromethane	ND ND	0.50								04/12/24	
Dibromomethane			ug/L							04/12/24	
	ND ND	0.50	ug/L								
Dichlorodifluoromethane	ND ND	0.50	ug/L							04/12/24	
Dichloromethane	ND	0.50	ug/L							04/12/24	
Ethyl tert-Butyl Ether (ETBE) Ethylbenzene	ND ND	0.50 0.50	ug/L ug/L							04/12/24 04/12/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	0	rganics C	Quality	Contro	l Report				
				Spike	Source		%REC	RP	D Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD Lim	it Analyzed Qual
		EPA 52	24.2 - Q	uality Co	ntrol				
Batch: AHD0868									Prepared: 4/11/2024
Prep Method: EPA 524.2									Analyst: CA
Blank (AHD0868-BLK1)									
Hexachlorobutadiene	ND	0.50	ug/L						04/12/24
Isopropylbenzene	ND	0.50	ug/L						04/12/24
m,p-Xylenes	ND	0.50	ug/L						04/12/24
Methyl-t-butyl ether	ND	0.50	ug/L						04/12/24
Naphthalene	0.82	0.50	ug/L						04/12/24 B
n-Butylbenzene	ND	0.50	ug/L						04/12/24
n-Propylbenzene	ND	0.50	ug/L						04/12/24
o-Xylene	ND	0.50	ug/L						04/12/24
p-Isopropyltoluene	ND	0.50	ug/L ug/L						04/12/24
• • • • •									04/12/24
sec-Butylbenzene	ND	0.50	ug/L						
Styrene	ND	0.50	ug/L						04/12/24
tert-Amyl Methyl Ether (TAME)	ND	3.0	ug/L						04/12/24
tert-Butyl alcohol (TBA)	ND	2.0	ug/L						04/12/24
tert-Butylbenzene	ND	0.50	ug/L						04/12/24
Tetrachloroethene (PCE)	ND	0.50	ug/L						04/12/24
Toluene	ND	0.50	ug/L						04/12/24
trans-1,2-Dichloroethene	ND	0.50	ug/L						04/12/24
trans-1,3-Dichloropropene	ND	0.50	ug/L						04/12/24
Trichloroethene (TCE)	ND	0.50	ug/L						04/12/24
Trichlorofluoromethane	ND	5.0	ug/L						04/12/24
Vinyl Chloride	ND	0.50	ug/L						04/12/24
Total 1,3-Dichloropropene	ND	0.50	ug/L						04/12/24
Total Trihalomethanes	ND	0.50	ug/L						04/12/24
Total Xylenes	ND	0.50	ug/L						04/12/24
Surrogate: 1,2-Dichlorobenzene-d4	47			50		93	70-130		04/12/24
Surrogate: Bromofluorobenzene	48			50		95	70-130		04/12/24
Blank Spike (AHD0868-BS1)									
1,1,1,2-Tetrachloroethane	9.4	0.50	ug/L	10	ND	94	70-130		04/12/24
1,1,1-Trichloroethane	9.5	0.50	ug/L	10	ND	95	70-130		04/12/24
1,1,2,2-Tetrachloroethane	9.1	0.50	ug/L	10	ND	91	70-130		04/12/24
1,1,2-Trichloro-1,2,2-trifluoroethane	10	10	ug/L	10	ND	103	70-130		04/12/24
1,1,2-Trichloroethane	9.0	0.50	ug/L	10	ND	90	70-130		04/12/24
1,1-Dichloroethane	9.7	0.50	ug/L	10	ND	97	70-130		04/12/24
1,1-Dichloroethene	10	0.50	ug/L	10	ND	104	70-130		04/12/24
1,1-Dichloropropene	9.1	0.50	ug/L	10	ND	91	70-130		04/12/24
1,2,3-Trichlorobenzene	9.3	0.50	ug/L	10	ND	93	70-130		04/12/24
1,2,4-Trichlorobenzene	10	0.50	ug/L	10	ND	100	70-130		04/12/24
1,2,4-Trimethylbenzene	9.3	0.50	ug/L	10	ND	93	70-130		04/12/24
1,2-Dichlorobenzene	9.4	0.50	ug/L	10	ND	94	70-130		04/12/24
1,2-Dichloroethane	9.0	0.50	ug/L	10	ND	90	70-130		04/12/24
1,2-Dichloropropane	9.3	0.50	ug/L	10	ND	93	70-130		04/12/24
1,3,5-Trimethylbenzene	9.4	0.50	ug/L	10	ND	94	70-130		04/12/24
1,3-Dichlorobenzene	9.2	0.50	ug/L	10	ND	92	70-130		04/12/24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

		rganics Q			•						
				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 52	4.2 - Qı	uality Co	ntrol						
Batch: AHD0868				-						Prepare	d: 4/11/2024
Prep Method: EPA 524.2											nalyst: CAT
Plant Onite (AUDOCCO DC4)											
Blank Spike (AHD0868-BS1) 1,3-Dichloropropane	9.2	0.50	ug/L	10	ND	92	70-130			04/12/24	
1,4-Dichlorobenzene	9.9	0.50	ug/L ug/L	10	ND	99	70-130			04/12/24	
2,2-Dichloropropane	8.7	0.50	ug/L ug/L	10	ND	87	70-130			04/12/24	
• •		5.0	-		ND	89	70-130			04/12/24	
2-Butanone	8.9		ug/L	10							
2-Chlorotoluene	9.2 9.3	0.50	ug/L	10	ND ND	92	70-130			04/12/24 04/12/24	
2-Hexanone		10	ug/L	10		93	70-130				
4-Chlorotoluene	9.4	0.50	ug/L	10	ND	94	70-130			04/12/24	
4-Methyl-2-pentanone	9.5	5.0	ug/L	10	ND	95	70-130			04/12/24	
Acetone	9.3	10	ug/L	10	ND	93	70-130			04/12/24	
Benzene	9.1	0.50	ug/L	10	ND	91	70-130			04/12/24	
Bromobenzene	9.2	0.50	ug/L	10	ND	92	70-130			04/12/24	
Bromochloromethane	8.5	0.50	ug/L	10	ND	85	70-130			04/12/24	
Bromodichloromethane	9.0	0.50	ug/L	10	ND	90	70-130			04/12/24	
Bromoform	9.4	0.50	ug/L	10	ND	94	70-130			04/12/24	
Bromomethane	9.3	0.50	ug/L	10	ND	93	70-130			04/12/24	
Carbon Tetrachloride	9.3	0.50	ug/L	10	ND	93	70-130			04/12/24	
Chlorobenzene	9.2	0.50	ug/L	10	ND	92	70-130			04/12/24	
Chloroethane	9.7	0.50	ug/L	10	ND	97	70-130			04/12/24	
Chloroform	10	0.50	ug/L	10	ND	105	70-130			04/12/24	
Chloromethane	8.8	0.50	ug/L	10	ND	88	70-130			04/12/24	
cis-1,2-Dichloroethene	11	0.50	ug/L	10	ND	105	70-130			04/12/24	
cis-1,3-Dichloropropene	9.8	0.50	ug/L	10	ND	98	70-130			04/12/24	
Dibromochloromethane	9.1	0.50	ug/L	10	ND	91	70-130			04/12/24	
Dibromomethane	9.0	0.50	ug/L	10	ND	90	70-130			04/12/24	
Dichlorodifluoromethane	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
Dichloromethane	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
Ethyl tert-Butyl Ether (ETBE)	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
Ethylbenzene	9.7	0.50	ug/L	10	ND	97	70-130			04/12/24	
Hexachlorobutadiene	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
Isopropylbenzene	9.3	0.50	ug/L	10	ND	93	70-130			04/12/24	
m,p-Xylenes	19	0.50	ug/L	20	ND	93	70-130			04/12/24	
Methyl-t-butyl ether	18	0.50	ug/L	20	ND	89	70-130			04/12/24	
Naphthalene	11	0.50	ug/L	10	ND	107	70-130			04/12/24	
n-Butylbenzene	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
n-Propylbenzene	9.2	0.50	ug/L	10	ND	92	70-130			04/12/24	
o-Xylene	9.2	0.50	ug/L	10	ND	92	70-130			04/12/24	
p-Isopropyltoluene	9.5	0.50	ug/L	10	ND	95	70-130			04/12/24	
sec-Butylbenzene	9.1	0.50	ug/L	10	ND	91	70-130			04/12/24	
Styrene	9.3	0.50	ug/L	10	ND	93	70-130			04/12/24	
tert-Amyl Methyl Ether (TAME)	9.8	3.0	ug/L	10	ND	98	70-130			04/12/24	
tert-Butyl alcohol (TBA)	8.7	2.0	ug/L	10	ND	87	70-130			04/12/24	
tert-Butylbenzene	8.9	0.50	ug/L	10	ND	89	70-130			04/12/24	
T. () () () () () ()	0.0	0.55	g. -				70.465				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

8.7

9.6

Tetrachloroethene (PCE)

Toluene

AHD2080 FINAL 04162024 1723

04/12/24

04/12/24

10

10

ND

ND

70-130

70-130

87

96

0.50

0.50

ug/L

ug/L

BSK Associates Laboratory Fresno Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD		Analyzed	Qual
		EPΔ 53	24.2 - Oı	uality Co	ntrol						
Batch: AHD0868		LIAU	-T.2 - Q(uanty 00						Prepare	d: 4/11/202
Prep Method: EPA 524.2										•	nalyst: CA
Blank Spike (AHD0868-BS1)	9.0	0.50	ua/l	10	ND	90	70-130			04/12/24	
trans-1,2-Dichloroethene	9.3	0.50	ug/L ug/L	10	ND	93	70-130			04/12/24	
trans-1,3-Dichloropropene			_							04/12/24	
Trichloroethene (TCE)	8.6	0.50	ug/L	10	ND	86	70-130				
Trichlorofluoromethane	9.6	5.0	ug/L	10	ND	96	70-130			04/12/24	
Vinyl Chloride	9.4 <i>4</i> 9	0.50	ug/L	10 <i>50</i>	ND	94	70-130 70-130			04/12/24 04/12/24	
Surrogate: 1,2-Dichlorobenzene-d4						98					
Surrogate: Bromofluorobenzene	51			50		101	70-130			04/12/24	
Blank Spike Dup (AHD0868-BSD1)											
1,1,1,2-Tetrachloroethane	8.7	0.50	ug/L	10	ND	87	70-130	8	30	04/12/24	
1,1,1-Trichloroethane	8.7	0.50	ug/L	10	ND	87	70-130	9	30	04/12/24	
1,1,2,2-Tetrachloroethane	8.7	0.50	ug/L	10	ND	87	70-130	5	30	04/12/24	
1,1,2-Trichloro-1,2,2-trifluoroethane	9.7	10	ug/L	10	ND	97	70-130	5	30	04/12/24	
1,1,2-Trichloroethane	8.3	0.50	ug/L	10	ND	83	70-130	8	30	04/12/24	
1,1-Dichloroethane	9.0	0.50	ug/L	10	ND	90	70-130	8	30	04/12/24	
1,1-Dichloroethene	9.0	0.50	ug/L	10	ND	90	70-130	15	30	04/12/24	
1,1-Dichloropropene	8.5	0.50	ug/L	10	ND	85	70-130	7	30	04/12/24	
1,2,3-Trichlorobenzene	9.1	0.50	ug/L	10	ND	91	70-130	3	30	04/12/24	
1,2,4-Trichlorobenzene	8.7	0.50	ug/L	10	ND	87	70-130	14	30	04/12/24	
1,2,4-Trimethylbenzene	8.3	0.50	ug/L	10	ND	83	70-130	10	30	04/12/24	
1,2-Dichlorobenzene	8.7	0.50	ug/L	10	ND	87	70-130	8	30	04/12/24	
1,2-Dichloroethane	8.6	0.50	ug/L	10	ND	86	70-130	5	30	04/12/24	
1,2-Dichloropropane	8.9	0.50	ug/L	10	ND	89	70-130	5	30	04/12/24	
1,3,5-Trimethylbenzene	8.4	0.50	ug/L	10	ND	84	70-130	11	30	04/12/24	
1,3-Dichlorobenzene	8.3	0.50	ug/L	10	ND	83	70-130	11	30	04/12/24	
1,3-Dichloropropane	8.4	0.50	ug/L	10	ND	84	70-130	9	30	04/12/24	
1,4-Dichlorobenzene	8.7	0.50	ug/L	10	ND	87	70-130	13	30	04/12/24	
2,2-Dichloropropane	7.7	0.50	ug/L	10	ND	77	70-130	12	30	04/12/24	
2-Butanone	8.0	5.0	ug/L	10	ND	80	70-130	10	30	04/12/24	
2-Chlorotoluene	8.4	0.50	-	10	ND	84	70-130	9	30	04/12/24	
2-Hexanone	8.5		ug/L						30	04/12/24	
		10	ug/L	10	ND	85 86	70-130	10			
4-Chlorotoluene	8.6	0.50	ug/L	10	ND	86	70-130	9	30	04/12/24	
4-Methyl-2-pentanone	9.0	5.0	ug/L	10	ND	90	70-130	6	30	04/12/24	
Acetone	9.2	10	ug/L	10	ND	92	70-130	2	30	04/12/24	
Benzene	8.5	0.50	ug/L	10	ND	85 86	70-130	6	30	04/12/24	
Bromobenzene	8.6	0.50	ug/L	10	ND	86	70-130	7	30	04/12/24	
Bromochloromethane	8.2	0.50	ug/L	10	ND	82	70-130	4	30	04/12/24	
Bromodichloromethane	8.4	0.50	ug/L	10	ND	84	70-130	7	30	04/12/24	
Bromoform	8.7	0.50	ug/L	10	ND	87	70-130	8	30	04/12/24	
Bromomethane	8.5	0.50	ug/L	10	ND	85	70-130	9	30	04/12/24	
Carbon Tetrachloride	9.2	0.50	ug/L	10	ND	92	70-130	1	30	04/12/24	
Chlorobenzene	8.2	0.50	ug/L	10	ND	82	70-130	11	30	04/12/24	
Chloroethane	8.8	0.50	ug/L	10	ND	88	70-130	10	30	04/12/24	
Chloroform	8.8	0.50	ug/L	10	ND	88	70-130	18	30	04/12/24	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	C	rganics C	Quality	Contro	l Report						
				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 52	24.2 - Q	uality Co	ntrol						
Batch: AHD0868										Prepare	d: 4/11/2024
Prep Method: EPA 524.2											nalyst: CAT
Plant On't a Pour (AUDOSSO POP4)											
Blank Spike Dup (AHD0868-BSD1) Chloromethane	8.1	0.50	//	10	ND	81	70-130	0	30	04/12/24	
cis-1,2-Dichloroethene	8.4	0.50	ug/L ug/L	10 10	ND ND	84	70-130	8 22	30	04/12/24	
cis-1,3-Dichloropropene	9.0	0.50	ug/L ug/L	10	ND	90	70-130	9	30	04/12/24	
Dibromochloromethane	8.3	0.50	ug/L	10	ND	83	70-130	9	30	04/12/24	
Dibromomethane	8.4	0.50	ug/L ug/L	10	ND ND	84	70-130	7	30	04/12/24	
Dichlorodifluoromethane	9.0	0.50	ug/L ug/L	10	ND ND	90	70-130	, 5	30	04/12/24	
Dichloromethane	8.6	0.50	ug/L	10	ND	86	70-130	10	30	04/12/24	
Ethyl tert-Butyl Ether (ETBE)	8.9	0.50	ug/L ug/L	10	ND	89	70-130	6	30	04/12/24	
Ethylbenzene	8.7	0.50	ug/L	10	ND	87	70-130	11	30	04/12/24	
Hexachlorobutadiene	8.4	0.50	ug/L	10	ND	84	70-130	12	30	04/12/24	
Isopropylbenzene	8.6	0.50	ug/L	10	ND	86	70-130	8	30	04/12/24	
m,p-Xylenes	17	0.50	ug/L	20	ND	83	70-130	12	30	04/12/24	
Methyl-t-butyl ether	17	0.50	ug/L	20	ND	85	70-130	5	30	04/12/24	
Naphthalene	9.6	0.50	ug/L	10	ND	96	70-130	11	30	04/12/24	
n-Butylbenzene	8.7	0.50	ug/L	10	ND	87	70-130	9	30	04/12/24	
n-Propylbenzene	8.4	0.50	ug/L	10	ND	84	70-130	10	30	04/12/24	
o-Xylene	8.2	0.50	ug/L	10	ND	82	70-130	12	30	04/12/24	
p-Isopropyltoluene	8.4	0.50	ug/L	10	ND	84	70-130	12	30	04/12/24	
sec-Butylbenzene	8.0	0.50	ug/L	10	ND	80	70-130	12	30	04/12/24	
Styrene	8.3	0.50	ug/L	10	ND	83	70-130	11	30	04/12/24	
tert-Amyl Methyl Ether (TAME)	9.3	3.0	ug/L	10	ND	93	70-130	5	30	04/12/24	
tert-Butyl alcohol (TBA)	9.2	2.0	ug/L	10	ND	92	70-130	6	30	04/12/24	
tert-Butylbenzene	8.3	0.50	ug/L	10	ND	83	70-130	7	30	04/12/24	
Tetrachloroethene (PCE)	8.4	0.50	ug/L	10	ND	84	70-130	3	30	04/12/24	
Toluene	8.8	0.50	ug/L	10	ND	88	70-130	9	30	04/12/24	
trans-1,2-Dichloroethene	8.5	0.50	ug/L	10	ND	85	70-130	6	30	04/12/24	
trans-1,3-Dichloropropene	8.3	0.50	ug/L	10	ND	83	70-130	11	30	04/12/24	
Trichloroethene (TCE)	8.4	0.50	ug/L	10	ND	84	70-130	3	30	04/12/24	
Trichlorofluoromethane	8.8	5.0	ug/L	10	ND	88	70-130	8	30	04/12/24	
	0.0	5.0	~9					•	-		

9.5

46

47

0.50

ug/L

10

50

50

Vinyl Chloride

Surrogate: 1,2-Dichlorobenzene-d4

Surrogate: Bromofluorobenzene

04/12/24

04/12/24 04/12/24

ND

95

92

70-130

70-130

70-130

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals
- Field tests are outside the scope of laboratory accreditation and there is no certification available for field testing.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.
- · (2) Formerly known as Bis(2-Chloroisopropyl) ether.
 - Unless otherwise noted, TOC results by SM 5310C method do not include purgeable organic carbon, which is removed along with the inorganic carbon interference. The POC contribution to TOC is considered to be negligible.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Certificate of Analysis

Definitions

mg/L: Milligrams/Liter (ppm)
mg/Kg: Milligrams/Kilogram (ppm)
µg/L: Micrograms/Liter (ppb)
µg/Kg: Micrograms/Kilogram (ppb)

%: Percent NR: Non-Reportable

MDL: Method Detection Limit
RL: Reporting Limit: DL x Dilution
ND: None Detected below MRL/MDL

pCi/L: PicoCuries per Liter RL Mult: RL Multiplier

MCL: Maximum Contaminant Limit

MDA95: Min. Detected Activity
MPN: Most Probable Number
CFU: Colony Forming Unit
Absent: Less than 1 CFU/100mLs

Present: 1 or more CFU/100mLs
U: The analyte was not detected at or

above the reported sample quantitation

limit.

Please see the individual Subcontract Lab's report for applicable certifications.

The following parameters are not available for certification through CA ELAP:

Odor Diisopropyl ether (DIPE) by EPA 524.2

The following parameters are calculated values and are outside the scope of our NELAP accreditation:

Total Nitrogen Aggressive Index Trivalent Chromium

BSK is not accredited under the NELAP program for the following additional parameters:

NA

Certificate of Analysis

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

_		
-	resn	เด

State of California - ELAP	1180	State of Hawaii	4021
Los Angeles CSD	9254479	NELAP certified	4021-023
State of Nevada	CA000792024-03	State of Oregon - NELAP	4021-023
EPA UCMR5	CA00079	State of Washington	C997-24

Sacramento

State of California - ELAP 1180-S1

San Bernardino

State of California - ELAP 1180-S2 Los Angeles CSD 9254478

NELAP certified 4119-008 State of Oregon - NELAP 4119-008

Vancouver

NELAP certified WA100008-016 State of Oregon - NELAP WA100008-016

State of Washington C824-23

AHD2080 Mader5465 04/12/2024

Sample Integrity

BSK Bottles:/ Yes Page Was temperature within range? Were correct containers and preservatives Yes No NA Yes No NA Chemistry ≤ 6°C Micro < 8°C received for the tests requested? If samples were taken today, is there evidence Bubbles Present VOAs (524,2/TTHM/TCP)? Yes No NA Yes No (NA that chilling has begun? TB Received? (Check Method Below) Yes (No)NA Did all bottles arrive unbroken and intact? Yes No Was a sufficient amount of sample received? Yes No Did all bottle labels agree with COC? No Do samples have a hold time <72 hours? Yes No Was sodium thiosulfate added to CN sample(s) Was PM notified of discrepancies? NA Yes No (NA Yes until chlorine was no longer present? By/Time: 250ml(A) 500ml(B) 1Liter(C) 40mlVOA(V) 125ml(D) Checks* Passed? Bacti Na₂S₂O₃ None (P)White Cap Cr6 (P) Lt. Green Label/Blue Cap NH40H(NH4)2SO4 DW PF CI, pH > 8 Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)2SO4 WW pH 9.3-9.7 F Cr6 (P) Black Label/Blue Cap NH40H(NH4)2SO4 7199 pH 9.0-9.5 PF ***24 HOUR HOLD TIME*** performed HNO₃ (P) Red Cap or HCI (P) Purple Cap/Lt. Blue Label H₂SO₄ (P) or (AG) PF pH < 2 NaOH (P) Green Cap CI, pH >10 are NaOH + ZnAc (P) pH > 9 P F N/A or Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G, Diesel, TCP Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂SO₃ 250mL (AG)^{Neon Green Label} 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 pH < 3P F NH₄CI (AG)^{Purple Label} 552 EDA (P) or (AG) Brown Label DBPs HCL (CG) 524.2, BTEX, Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Trizma - EPA 537.1 Light Blue Label FB Ammonia Acetate - EPA 533 Purple Label FB **Bottled Water** Asbestos 1L (P) w/ Foil / LL Metals Bottle Clear Glass OTHER: Lot# Date/Time Preservation Check Container Preservative Initials Split SP pH Lot # SP CI Lot # *Preservation check completed by lab performing analysis. ✓ Indicates Blanks Received Comments 504 ___ 524.2 ___ TTHM ___ 537/533 ___ TCP___ ✓ MS/MSD Received Method: ______ Labeled by: Labels Checked by:

ASSOCIATES www.bskassociates.com

687 N. Laverne Ave., Fresno, CA 93727 (559) 497-2888 CA ELAP No. 1180

Turnaround Time Request Standard - 10 business days

Rush (Surcharge may apply)
Date needed: 2 DAY TAT!

AIID2080 Mader5465 04/12/2024

_		Date needed: 4 DAT IAI:	
Temp://	C Thermometer ID:	*Required Fields	
City of Modors	Report Attention*: Martin Mendoza	œ тo⁺: artin Mendoza	Phone*: Fax: 559-661-4900
2	O. C.	r.v.m.	E-mail: mmendoza@madera.gov
1030 S. Gateway Drive	Madera	State*: Zip*: CA 93637-4728	077
Special Sampling	Project #	Phase # Task #	nded List Su
Reporting Options Trace (J-Flag) Swamp EDD Type:	Regulatory Carbon Copies SWRCB (Drinking Water)	Regulatory Compliance Regulatory Compliance Regulatory Compliance Regulatory Compliance	Exte
Sampler Name (Printed/Signature)*: Marttin Mendoza	Merced Co Fresno Co	1	.2 -
Markin Transp. CMLC address Market and particular to the	X Other: Internal Purposes	Geolracker #	
# Sample Description* Sampled* Matrix*	Sampled* Matrix*	Comments / Station Code / WTRAX	
Wate tower	7		×
EPA 524 VOCs - Trip Blank (Lo#	Water	Pr	<
	\		
Relinguished by Sunday and Disarda Ningon		OHI-MM	
Relinguished by Manture and Danted Name	y of Madeon	4	Company
Browned for Albert Commenced	Company	lime Received by (Signature and Printed Name)	Company
Commission of the commission o	5821 4/12 B	Date:	Check / Cash Amount: PIA# Init.
Shipping Method: GLS UPS WALK-IN Cobling Method: Wet Blue None	FED EX PMS Courier.		Custody Seal: Y(N) Chilling Process Begun: Y(N)